首页> 外文OA文献 >Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature
【2h】

Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature

机译:Ricci中的热核和曲率边界以有界标量流动   曲率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we analyze Ricci flows on which the scalar curvature isglobally or locally bounded from above by a uniform or time-dependent constant.On such Ricci flows we establish a new time-derivative bound for solutions tothe heat equation. Based on this bound, we solve several open problems: 1.distance distortion estimates, 2. the existence of a cutoff function, 3.Gaussian bounds for heat kernels, and, 4. a backward pseudolocality theorem,which states that a curvature bound at a later time implies a curvature boundat a slightly earlier time. Using the backward pseudolocality theorem, we next establish a uniform $L^2$curvature bound in dimension 4 and we show that the flow in dimension 4converges to an orbifold at a singularity. We also obtain a stronger$\varepsilon$-regularity theorem for Ricci flows. This result is particularlyuseful in the study of K\"ahler Ricci flows on Fano manifolds, where it can beused to derive certain convergence results.
机译:在本文中,我们分析了标量曲率从上方全局或局部由统一或随时间变化的常数限制的Ricci流,并在此Ricci流上建立了热方程解的新的时间导数界。基于此边界,我们解决了几个开放性问题:1.距离畸变估计; 2.临界函数的存在; 3.热核的高斯边界;以及4.后向伪局部定理,其指出曲率在较晚的时间表示曲率在较早的时间限制。使用向后的伪局部性定理,我们接下来在维4上建立一个统一的$ L ^ 2 $曲率,我们证明维4的流以奇点收敛到一个圆角。我们还获得了Ricci流的更强的\ varepsilon $正则定理。该结果在研究Fano流形上的K'ahler Ricci流中特别有用,在该流中可用于得出某些收敛结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号